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In the Image of the Mind: How Neuroscience Forges the Path to True Artificial General 

Intelligence 

 

Current AI systems lack the fundamental evolutionary motifs that make natural biological 

intelligence “general.” Biological intelligence, as it is exhibited in humans, has a very adaptable 

problem-solving capability that can function at a high level through inference, without huge 

swaths of data about a task. True Artificial General Intelligence (AGI) may require architectures 

that reproduce these biological motifs rather than brute-force scale in prediction capacity. 

The idea of a true Artificial General Intelligence is one that has been debated heavily among 

leading minds in intelligent technology. By studying the consensus among AI leaders and 

creators, we can narrow down the systematic definition of AGI to be widely accepted as a highly 

autonomous system capable of understanding, learning, and applying knowledge across any 

intellectual task or skillset at a capacity so as to match or outperform human work. 

But is this definition truly fitting of the so highly sought-after AGI benchmark? I believe that 

such a sought-after benchmark of AI intelligence must be distinguished further and rooted in a 

fundamentally different philosophy of computation. Rather than viewing AGI, as the widely 

accepted definition suggests, as a brutally powerful AI system with exponentially higher 

parameters, neural nets, and complexity, a case could be made for the adaptation of AGI as a 

system that thinks not through brute-force computation, but rather practical, logical, and energy-

efficient means synonymous with human thought. An AGI-based system, rather than fantastically 

imitate human-like reasoning, should truly function in the likeness of the ultimate evolution of 

natural intelligence—the human mind. 

To frame the ideas of intelligence and evaluate them consistently, we must first build a baseline 

understanding of what intelligence is through a dissection of intelligent mechanisms within the 

human mind. This begins with understanding how the brain functions fundamentally through its 

phenomena of memory storage, thought formation, learning, and consciousness. This will help us 

understand the underlying rules/behaviors that biological neurons exhibit as a result of nature’s 

ultimate evolution. We will ground aspirations of AGI in human motifs of energy-efficiency, 

pattern-based recall, and adaptive neural remodeling. If human cognition can thrive on less 

energy than that required to light a bulb, what does this imply for the potential of an AGI system 

built with a true representation of the human psyche? 

 

 



The Human Mind 

When we think of the human mind, the brain is essentially at the forefront of what we are trying 

to understand. However, it is important to note that the brain functions not only as an 

independent blob of interconnected neurons, but as a part of a highly organized and efficient 

neural system of connections flowing through the spinal cord, body organs, and the body’s 

senses interacting with its environment. The human psyche isn’t formed by the brain in isolation, 

but it is formed by a constant reinforcement from external stimuli communicating with the brain, 

as well as the brain’s own synapses. 

At the core of this biological nervous system is the neuron—a cell specialized in synaptic 

connectivity, utilizing electro- and chemical means to logically propagate a stimulus through 

networks of other neurons. This simple function of the neuron is able to produce such vast and 

diverse functions as memory, association, cognition, consciousness, motor movement, and 

subconscious processes. So how is the simple neuron firing electrochemical signals to other 

neurons able to produce such a large swath of functions? The answer, although being studied 

heavily, is at its core very simple—interconnectedness. Neurons do not act individually; rather, 

they act as a part of a highly interconnected structure of circuits, regions, hierarchies, and 

weights. Billions of neurons form trillions of connections with one another, leading to a virtually 

infinite amount of neural pathways and connections, and this can begin to explain the diversity of 

functions that the brain and the greater nervous system is capable of. When we dive into 

interconnectedness of neurons, we aren’t talking about a physical circuit of neurons with its 

axons glued together. We are actually describing a crucial behavior of neurons, that is their 

plasticity. Neurons, through subsequent firing with other neurons, have the ability to strengthen 

their connections (synapses). While the neuron strengthens certain synapses and weakens other 

unused synapses, it is effectively forming circuits with other neurons, as when a singular neuron 

in this vast circuit is pushed over its action potential, this can cause a cascade of firings of these 

other neurons in the same circuit. Often these neural cascades can occur over different regions of 

the brain, causing some very interesting phenomena. For example, let’s say you smell an apple 

pie fresh out of the oven. This excitation of the neurons associated with our olfactory senses can 

ignite a cascade of neurons that span through our prefrontal cortex, hippocampus, amygdala, and 

gustatory complex, causing us to faintly taste the apple pie and remember a vivid time our 

grandmother made said apple pie. This example of an external olfactory stimulus leading to a 

cascade of other specific neural firings in other brain regions, causing memories, emotions, 

thoughts, and even taste, highlights the specialty of neurons and how powerful 

interconnectedness between neurons can be. 

 

 

 



Memory 

At the core of memory formation lies the mechanism of synaptic plasticity. This is a system 

where neural networks edit themselves to various pathways that the neural net deems to be most 

efficient based on repeated synaptic activation of a certain pathway of neurons. Essentially, as 

experiences or events activate neurons in the brain for our senses, emotion, cognition, or 

understanding, these events will light up specific synaptic pathways in the brain. Over time, 

these pathways will strengthen, making them “easier” to ignite again in response to an activation 

stimulus. This is the leading model behind how memory consolidation works. Repeated synaptic 

activity between neurons makes transmission more efficient, creating a stronger, more excitable 

connection (Long Term Potentiation), whilst unused synapses are not efficient and weakened 

over time (Long Term Depression). These mechanisms of synaptic plasticity allow the brain to 

reactivate specific synaptic patterns that represent a memory. Take this example for instance: 

Imagine you are walking through your kitchen and you smell a strong odor of butter. This 

olfactory sensory stimulus may activate a cascade of neurons, tracing direct pathways to brain 

regions responsible for memory and emotion. Immediately, we may vividly recall a time when 

we baked chocolate chip cookies with that same buttery aroma, and why we may now feel 

emotions of comfort or joy associated with that experience. These memories and feelings arise 

because of the well-established synaptic links that track not only through the sensory response 

itself, but also to the stored memory of that baking experience and the positive emotions tied to 

it. All of this can unfold from the mere detection of a familiar scent of fresh butter. 

Association 

Associative behavior is a very important characteristic of neurons that allows them to be 

malleable and adapt to a very diverse set of stimuli. Association in biological neurons is caused 

by the chemical transfer of information along the synaptic cleft. This is a very interesting topic in 

itself, as one may ask the question, “why do neurons not just transfer information through direct 

electrical signaling between the synapse?” Well, there are actually a few neurons that exhibit this 

behavior where they communicate through electrical means between neurons. However, there is 

a reason that this type of communication isn’t abundant in biological organisms and is very 

specific to a few set of functions. Although this electrical form of communication is many times 

faster than its chemical counterpart, the electrical communication is not plastic at all. And this is 

a very crucial part of neurons that makes them so evolutionarily powerful. Neurons, in neural 

wiring patterns, are able to adapt to stimuli and feedback loops extremely well due to the 

immense plasticity enabled by chemical synaptic communication. Let’s consider an example of 

learning sports. Let’s say that you have already learned how to play basketball and soccer, and 

have honed your skills in these sports. Now, you are tasked with learning how to play football. 

How does your brain cope with learning this? It doesn’t start again from scratch to learn football, 

as neurons are inherently lazy and want to expend as little energy as possible to achieve a task. 

So what they do is try to form associations with previous neural wiring loops. So when you first 

throw a football, similar motor movements that were used when you threw a basketball may 



ignite, and begin a loop with older neural connections associated with that basketball skill. This 

allows for parts of this new skill of football to be derived and managed by the older neural firing 

patterns for shooting a basketball. Slowly, a few neurons begin growing dendrites, weakening old 

connections, and strengthening football connections, resulting in an associative neuron that 

rewired itself to connect old patterns with new patterns. 

 

Cognition 

Cognition in the brain occurs through a multistep process that is able to take in information from 

the environment, make sense of it, think about it in a conceptual manner, solve problems, and 

make decisions. Cognition begins with first taking in information from the environment. 

Although our photoreceptors in our eyes are able to pick up a detailed image of many photons, it 

is incredibly inefficient to transfer this data to the brain for further analysis. Instead, the raw data 

of photons from our photoreceptors or data from our other senses is compressed into chunks 

(latent variables) that are abstract ideas of an input rather than direct input data itself. For 

example, if we see a tiger in the jungle, our brain doesn’t receive all the photons of light emitting 

from the tiger; rather, the brain compresses it using varying hierarchies of neural networks to 

abstract this series of orange and black striped photons into neural wires that extract features like 

“orange figure with long black markings.” These ideas of shape, color, movement, environment, 

etc., are then moved up layers where they form more complex and coherent ideas of “animal,” 

“tiger,” and “danger.” These layers of perception are also aided by a characteristic of neural 

wiring called priors. Priors are essentially wirings of the neurons that exhibit past experiences 

and highlight likely scenarios to “fill in the blanks” of perception and cognition. For example, if 

one walks through a busy city and spots a blurry peripheral figure that ignites the same neural 

wirings for “orange,” “animal,” “tiger,” priors in the brain will amplify higher-order neural layers 

to brush this off as a highly unlikely event. Another thing to consider with cognition is that it 

isn’t a direct flow-chart of perception and thinking. Instead, it is a constant loop of predictive 

neural remodeling. The neurons predict ideas at various neural orders, and recheck with senses to 

confirm and affirm the neural predictions. Incorrect or partially correct neural predictions are 

remodeled and corrected to match the lower order of what actually comes in. 

 

 

The question still remains, however, as to how these very intricate, well-understood physical 

neural networks, arranged in a highly honed order, are able to perform a task which we perceive 

as metaphysical—thinking. How are we able to feel emotions, think thoughts, predict, have 

desires, etc., all from a physical depolarization/polarization wave? Well, thoughts aren’t actually 

separate. There isn’t a soul or a superior metaphysical being that associated certain neural firing 

patterns with their related thoughts or sequence of thoughts; rather, the brain essentially narrates 



itself. It tags neural firing patterns with language so it can perceive that firing pattern itself. The 

brain also holds a certain degree of understanding over its own firing patterns and is able to 

analyze this consciously through language which we perceive as thought. 

 

Artificial Intelligence 

How does AI function at its core? 

The way AI works is with a concept called an Artificial Neural Network. This is a highly 

organized processing method consisting of nodes and wiring layers to form a hierarchical 

structure that assigns percentages of weightages. It learns by using large amounts of training data 

to correct itself through an algorithm called gradient descent, adjusting the values of nodes and 

weightages using backpropagation. Backpropagation is the process by which the correction 

algorithm starts at the incorrect output and examines the weightages of the nodes in a descending 

order until it reaches the primary lowest hierarchy of nodes and corrects them to then allow for a 

correct answer to be output. 

While much of the foundational AI learning is supervised, where models are trained on labeled 

data to predict outcomes, unsupervised learning represents another critical paradigm, especially 

in the pursuit of AGI. Unsupervised learning involves algorithms that analyze and cluster 

unlabeled datasets, discovering hidden patterns or data groupings without human intervention. 

This approach is key for models to learn from raw, unstructured data, mimicking how biological 

systems extract meaning from the world. They use neural architectures to compress input data 

into a lower-order, simpler representation and then reconstruct it, learning efficient wirings 

through reconstruction error minimization. Training in unsupervised settings often involves the 

network, mimicking the input data and adjusting its neural weights to reduce errors.  

At its core, Large Language Models (LLMs) function in a predictive model. They take in inputs 

and run it through sophisticated sorting algorithms that predict the next most probable word 

based on the previous context it was given, causing it to output this prediction. Now this is a very 

different architecture from what we may initially envision given that these LLMs are considered 

“artificially intelligent,” while this architecture seems like a sophisticated prediction model built 

off of large swaths of training example data, rather than conventional biological intelligence. 

AI architecture learns through machine learning which works by essentially having a large 

network of “nodes” or parameters. Each of these parameters is initially assigned a weightage at 

random. The weightage dictates what output the node gives to the next hierarchy line of neurons, 

until ultimately, the whole network of neurons spits out an output word that is very statistically 

likely, given the parameters and context that the AI architecture is working in. Each connection 

between layers of neurons are assigned weights, dictating how “bright” they are. This indicates 

the power with which they fire. This brightness of each of these nodes then moves up to the next 



successive layer of nodes that modify their own confidence weight based on the specific weight 

sequence of the combination of nodes that preceded it. This layer then utilizes its nodes’ weights 

to determine when it becomes meaningfully active to then influence the next layer of neurons in 

the hierarchy. Each of these nodes contain biases that determine how impressionable they are to 

output a meaningfully active brightness valuation. 

 

 

This is the core of how a basic forward pass works where the AI program takes in an input and 

spits an output that is statistically probable. Now how does this neural network actually learn and 

improve its output results? It uses a method called backpropagation. Backpropagation is 

essentially where the output is analyzed and compared with a training module where the output 

is assessed for accuracy. If the AI model outputs an incorrect or undesired output, the 

backpropagation system goes in the reverse orientation from the highest neural nodes to the most 

basic, slightly changing the weightages of each node until they then display the desired output 

result. This is repeated trillions of times over trillions of training sessions where the AI system is 

exposed to training data. It is basically a “blame game” where a master system asks hierarchies 

of nodes starting from the end, all the way to the first nodes. The end nodes that gave the 

incorrect output will “blame” nodes in the hierarchy before them, which will then adjust their 

neural weights and blame the nodes before them for exhibiting their own incorrect weightages, 

and so on. Eventually, the entire neural network has adjusted its weightage in response to the 

stimulus input, and produced the correct result together.  

So, this is a very simple system. How has it been able to become so smart at such a rapid pace, 

and how is it able to solve such diverse complex problems? Well, AI researchers began doing 

multiple things to make this AI architecture seem smarter to the user. First, this AI architecture 

was modified in the way that the nodes actually work. This was done by a team of researchers at 



Google who created a mathematic algorithm called a transformer. This essentially modifies the 

neural network from a sequence of simple firing nodes, to nodes that utilize horizontal 

architecture around them to understand the context of the problem that the whole neural network 

is trying to output. Essentially, this creates context for the nodes in the neural architecture. For 

example, if the neural network is incorporating the word “train,” it may be confused with the use 

cases, as one may use the word “train” to describe the mobile mass-transport vehicle, or may use 

the word “train” to describe an act of preparing for a sport, etc. The transformer allows the node 

of neural nets to “peek” at data received by other nodes to identify context among fellow nodes 

in the neural architecture, hence tailoring an output value that is more relevant to the assigned 

input task. 

Another technology is a process called reasoning, where the LLM breaks a complex task into 

simpler sub-tasks. The architecture then deploys neural nets to tackle these simpler problems 

individually, then synthesizes them to the central neural net to more logically and accurately 

output information. This may also allow for niche questions to be answered by finding 

correlations in training data from the simpler sub-tasks that were derived from that main query. 

The LLMs will also browse the web in many cases to act more complete by filling in gaps of 

training data or input confidence with information browsed on the web. 

 

Biological vs Artificial Systems of Intelligence 

What makes them so different? 

For many years, we described our brains using terminology that's become familiar thanks to the 

advent of computers. We talk about memory storage, capacity, processing, and retrieval of 

information—tasks that both the brain and computers seem capable of. This is actually flawed, 

though, because for instance, humans don’t have a mechanism for retrieving information from a 

specific location. This idea only materialized because we needed ways to explain our brains in 

language we understand, using the closest thing we have, which is a computer. Our brains don’t 

actually retrieve information; instead, we spontaneously activate multiple series of neural wiring 

patterns in response to a stimulus triggering any point in this wiring network. We don’t have a 

group of neurons just sitting there with a bunch of information, waiting to be prompted by 

another neuron to retrieve it and bring it to a different part. 

Another interesting quirk of biological wiring patterns is just how individualistic and unique they 

are. To explain this, let’s consider two scenarios:  

1. Would we get the same output from two AI systems that run the exact same model, 

trained exactly the same, and learn the same given the exact same input query?  

- Yes, the output responses of the two AI systems would be exactly the same. 



2. Would we get the same output from two biological humans who were trained exactly the 

same, by the same person using the same language, and if the humans were in the exact 

same location, controlling for essentially every part of their lives?  

- No, both would give responses which differed from each other in varying degrees.  

Now one might expect genetically identical twins who were trained in exactly the same way 

using an impossibly divine finger, to output the same result. So why is it the case that these two 

individuals give a different answer? This is due to the inherent biological randomness at the 

molecular and atomic levels that influence larger shifts progressively until the change becomes 

noticeable. Any singular ion channel in a neuron, with its quantum randomness, could alter entire 

neural pathways, dependencies, connections, and growth.  

 

When we look at the core fundamental ways in which the human mind functions and artificial 

intelligence functions, we can begin to see some contrasts in both systems. Although both 

systems at first appear to share many similarities (especially due to the fact that modern neural 

nets were at least in part inspired by the architecture of neural hierarchies in the brain), they 

actually function very differently both at the level of the individual node (AI) and neuron 

(organic). 

When we examine the simple units of each of these architectures, we can see differences in the 

way they are built to function. Neurons, at their core, are meant to fire or not fire in a binary 

fashion, whilst AI nodes are meant to fire at various confidence intervals to dictate their 

weightages and confidence based on the way they were trained. Also when we look at the more 

macroscopic level, we can see differences in the architectures with how the two systems function 

to execute a task. AI nodes function as a part of the hierarchy layer of nodes in a neural net, 

where flow of information is, at a base level, very linear and directional. Information flows from 

lower-order neural hierarchies to higher-order hierarchies, with each hierarchy influencing the 

next by shifting its weightage to different levels to inspire orderly weightages in progressive 

hierarchies of nodes. In biological neural architectures, however, the flow of information and 

execution of a process or task isn’t as linear as that of the AI. This is because neurons work in 

biological neural networks that work through constant feedback looping. 

Think of the differences like this: Artificial neural architectures behave like a bureaucracy, while 

biological neural architectures behave like a super-efficient small business. The artificial neural 

network hierarchically advances a protocol until it reaches an endpoint confidence interval, 

whilst biological neural networks rapidly fire to one another on impulse and strategic wiring, 

executing a task and exhibiting a biological behavior. While both systems are very effective at 

forward propagation—that is, taking an input and letting out a desired output—the biological 

architecture truly shines when it comes to learning or generalized intelligence. When we look at 

how the two systems learn, AI suddenly has a falloff effect due to the immense amount of 



compute, training, and energy it needs to learn a new behavior/skill. The biological architecture, 

however, in our brains, is able to simply take in an example or rules to work within the confines 

of, and it is able to execute a completely new novel task that it hadn’t previously encountered. 

This demonstrates the core difference between the natural and artificial architecture for 

intelligence. The AI, at a basic level, essentially takes the mean of all its training data and 

mathematically outputs the most likely result; but what happens when it encounters a completely 

new novel problem? The AI is unable to accurately mathematically predict a high-chance output 

due to a lack of training data and known knowledge on the subject, resulting in an inferior 

performance to the biological system. Now this is a very simplified look at AI architecture, but in 

reality, this “novelty problem” can be addressed by artificial architectures through their 

reasoning ability. They may be able to somewhat tackle complex problems by trying to break 

them into more and more miniscule chunks to individually process and come up with an accurate 

desired output for this otherwise niche question. 

 

 

True Artificial General Intelligence 

We must first establish the fact that Artificial Intelligence isn’t intelligent in the way we 

understand it. AI merely mimics human reasoning by running algorithms that break complex 

prompts into simple fragments which are then responded to in the most statistically sound 

manner using trillions of instances of training data that manipulated the AI’s architecture in such 

a way as to respond accurately to the fullest extent that the training data allows. This framework 

provides no means for creativity, curiosity, understanding, or wonder— a flaw that may limit the 

system’s capabilities for innovation or exploration at a high level.  

How might a true artificial general intelligence be attained?  

There are two main ways for humanity to achieve a true AGI. The first one, more realistic, is 

through innovation in forward propagation of LLMs. Just like how Google was able to come up 

with transformers which radically accelerated the capabilities of AI, radical new mathematical 

protocols focused on adaptive bandwidth for AI systems may help accelerate the advent of AGI. 

The second, and certainly most interesting way for humanity to achieve a true AGI (and beyond), 

is through wetware technologies. Specifically, hardware made to exhibit organoid intelligence, 

combining the best aspects of both artificial intelligence and biological intelligence. A fusion of 

the two in terms of hardware can allow for a respective program to achieve a high caliber of 

general intelligence, due to the sheer processing speed and power of silicon-based computing 

solutions, as well as high power-efficiency and data consolidation adaptability of biological 

neural wiring networks. 



There is a third more conventional way as well, in which AGI is being pursued. This method 

seeks to achieve AGI through sheer brute-force scaling, which has shown consistent success in 

AI advancement for frontier models. This method also seems to cause unpredictable abilities that 

were never anticipated. However, even this method of advancement relies on enormous training 

data sets as well as human-curated feedback signals, further solidifying the edge that a Bio-based 

intelligence system has.  

The main goal for a true AGI must be to solve one of the most pressing issues in AI currently, 

and in the near future, which is a lack of proper adaptability and learning. AI may never be able 

to advance to a point of superintelligence due to the inherent human limitations on learning. An 

AI that works, learns, and predicts all on an eternity of human knowledge without its own 

exploratory capability will forever be limited by only the known, and will never be able to 

explore the unknown and the undiscovered knowledge beyond the realms of its human creators’ 

perceptions. 

 


